Search results for "printed circuits"

showing 4 items of 4 documents

The Mu3e Data Acquisition

2020

The Mu3e experiment aims to find or exclude the lepton flavour violating decay $\mu^+\to e^+e^-e^+$ with a sensitivity of one in 10$^{16}$ muon decays. The first phase of the experiment is currently under construction at the Paul Scherrer Institute (PSI, Switzerland), where beams with up to 10$^8$ muons per second are available. The detector will consist of an ultra-thin pixel tracker made from High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), complemented by scintillating tiles and fibres for precise timing measurements. The experiment produces about 100 Gbit/s of zero-suppressed data which are transported to a filter farm using a network of FPGAs and fast optical links. On the filte…

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsMesonPhysics::Instrumentation and Detectorsdata acquisitionfibre: opticalFOS: Physical scienceshigh energy physics instrumentationprinted circuits7. Clean energycomputer: networkOptical fiber communicationData acquisitionsemiconductor detector: pixelOptical switchesmultiprocessor: graphicshardwareSensitivity (control systems)muon+: decay[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Electrical and Electronic EngineeringGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)scintillation counterFPGAClocksPhysicsData acquisition (DAQ)MuonPixelMesonsDetectorlepton: flavor: violationField programmable gate arraysDetectorsInstrumentation and Detectors (physics.ins-det)sensitivityNuclear Energy and EngineeringFilter (video)field programmable gate arrays (FPGAs)Data acquisition (DAQ); field programmable gate arrays (FPGAs); high energy physics instrumentation; printed circuitselectronics: readoutHigh Energy Physics::ExperimentLeptonelectronics: design
researchProduct

Sentinel-3/FLEX Biophysical Product Confidence Using Sentinel-2 Land-Cover Spatial Distributions

2021

The estimation of biophysical variables from remote sensing data raises important challenges in terms of the acquisition technology and its limitations. In this way, some vegetation parameters, such as chlorophyll fluorescence, require sensors with a high spectral resolution that constrains the spatial resolution while significantly increasing the subpixel land-cover heterogeneity. Precisely, this spatial variability often makes that rather different canopy structures are aggregated together, which eventually generates important deviations in the corresponding parameter quantification. In the context of the Copernicus program (and other related Earth Explorer missions), this article propose…

Atmospheric Science010504 meteorology & atmospheric sciencesComputer sciencevegetation mappingGeophysics. Cosmic physics0211 other engineering and technologiesContext (language use)02 engineering and technologyLand coverearthSentinel-2 (S2)01 natural sciencessentinel-3 (S3)FLEXcharacterizationComputers in Earth SciencesImage resolutionTC1501-1800spatial resolutionBiophysical productsSentinel-3 (S3)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingQC801-809biophysical productsbiological system modelingSubpixel renderingSpatial heterogeneityOcean engineeringinstrumentsfluorescence EXplorer (FLEX)Spatial ecologyflexible printed circuitssentinel-2 (S2)Spatial variabilityspatial distributionssensor phenomena
researchProduct

The FLuorescence EXplorer Mission Concept-ESA's Earth Explorer 8

2017

In November 2015, the FLuorescence EXplorer (FLEX) was selected as the eighth Earth Explorer mission of the European Space Agency. The tandem mission concept will provide measurements at a spectral and spatial resolution enabling the retrieval and interpretation of the full chlorophyll fluorescence spectrum emitted by the terrestrial vegetation. This paper provides a mission concept overview of the scientific goals, the key objectives related to fluorescence, and the requirements guaranteeing the fitness for purpose of the resulting scientific data set. We present the mission design at the time of selection, i.e., at the end of project phase Phase A/B1, as developed by two independent indus…

Vegetation mappingSpatial resolutionTemperature measurement010504 meteorology & atmospheric sciencesSpectrometerPayload0211 other engineering and technologies02 engineering and technologyCollocation (remote sensing)01 natural sciencesFluorescenceFluorescenceWavelength measurementPhotonicsGeneral Earth and Planetary SciencesEnvironmental scienceFLEXSatelliteFlexible printed circuitsElectrical and Electronic EngineeringSpectral resolutionImage resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Low angle bending detection semi-transparent piezoresistive sensor

2022

We designed, fabricated, and validated a piezoresistive bending sensor, a fundamental component of wearable electronic devices for monitoring human motion. The most diffused opaque carbon-based resistance flex sensors suffer from low detection for small bending angles. The sensor we here present is based on a semi-transparent active material (fulleropyrrolidine bisadducts polymer) and has the remarkable advantage of good electrical properties for low bending angles. The fabrication steps are effective since a pre-patterned ITO/PET surface is functionalized by chronoamperometric deposition, and the silver electrical contacts are inkjet printed. We propose a fitting function of the measured t…

Piezoresistive sensor Wearable technology Semi-transparent Flexible Inkjet printed circuits Organic polymer films ChronoamperometrySettore CHIM/01 - Chimica AnaliticaSettore CHIM/02 - Chimica Fisica
researchProduct